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Abstract Entity linking is a new technique in recommender systems to link users’ interaction behaviors in different

domains, for the purpose of improving the performance of the recommendation task. Linking-based cross-domain recom-

mendation aims to alleviate the data sparse problem by utilizing the domain-sharable knowledge from auxiliary domains.

However, existing methods fail to prevent domain-specific features to be transferred, resulting in suboptimal results. In

this paper, we aim to address this issue by proposing an adversarial transfer learning based model ATLRec, which effec-

tively captures domain-sharable features for cross-domain recommendation. In ATLRec, we leverage adversarial learning

to generate representations of user-item interactions in both the source and the target domains, such that the discrimina-

tor cannot identify which domain they belong to, for the purpose of obtaining domain-sharable features. Meanwhile each

domain learns its domain-specific features by a private feature extractor. The recommendation of each domain considers

both domain-specific and domain-sharable features. We further adopt an attention mechanism to learn item latent factors

of both domains by utilizing the shared users with interaction history, so that the representations of all items can be learned

sufficiently in a shared space, even when few or even no items are shared by different domains. By this method, we can

represent all items from the source and the target domains in a shared space, for the purpose of better linking items in

different domains and capturing cross-domain item-item relatedness to facilitate the learning of domain-sharable knowledge.

The proposed model is evaluated on various real-world datasets and demonstrated to outperform several state-of-the-art

single-domain and cross-domain recommendation methods in terms of recommendation accuracy.
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1 Introduction

With the development of the Internet, users are

more inclined to express their likes and dislikes for items

on the Internet. As a result, users may have interaction

records in different domains. Through entity linking,

users’ interaction behaviors in different domains can be

linked together. Considering the problem of data spar-

sity and cold-start that single domain [1, 2] typically en-

counters, the linking of users in different domains opens

up new opportunities to implement recommendation

tasks more effectively and accurately. In real life, the

same user is likely to have similar tastes across different

domains, making entity linking a promising and practi-

cal technique for recommendation. It has been proven

in [3–5] that the knowledge of a user in auxiliary do-

mains contributes to enhancing the recommendation to

her/him in the target domain. However, because of the

existence of negative transfer, we face severe challenges

in linking users’ interaction behaviors in different do-

mains, and making full use of the interactions in the

auxiliary domains for the recommendation task in the

target domain.

The existing linking-based approaches can be di-

vided into: content-based, transfer-based, and embe-

dding-based. Content-based approaches mainly focus
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on linking different domains by identifying auxiliary

contents such as user/item attributes [6], social tags [7],

and user-generated texts [8]. Transfer-based approaches

tend to transfer knowledge across domains by em-

ploying machine learning techniques, such as neural

networks [9, 10] and transfer learning [11]. However, most

existing transfer-based approaches pay more attention

to how to transfer domain-sharable features than to

how to obtain them, which results in domain-specific

features being transferred. If domain-specific features

are transferred from the source domain to the target do-

main, the source domain will introduce noise into the

training of the target domain, resulting in worse recom-

mendation performance in the target domain. In [12],

the low-rank and sparse cross-domain recommendation

model (LSCD) is proposed to solve the above prob-

lem to some extent. The method is based on cross-

domain collaborative filtering (CDCF) [13], which trans-

fers the knowledge of rating data among multiple do-

mains and separates the user latent feature matrix into

sharable and domain-specific parts adaptively to make

a better recommendation. However, LSCD is a shal-

low model, which cannot learn complex nonlinear user-

item interaction relationships. Embedding-based ap-

proaches focus on enhancing user or item modeling

by means of network embedding and other embedding

methods [14–16]. However, existing embedding-based

methods rely on auxiliary contents such as textual data

and visual data.

Adversarial transfer learning [17] is a technique that

incorporates adversarial learning inspired by genera-

tive adversarial nets (GAN) [18] into transfer learning to

find transferable knowledge which applies to both the

source domain and the target domain. However, ad-

versarial transfer learning ignores extracting domain-

specific features in each domain which is also impor-

tant for cross-domain recommendation. Though some

approaches inspired by GAN for specific cross-domain

recommendation scenarios have been proposed, they ei-

ther ignore domain-specific features in each domain [19]

or recommend items in the scenario where the target

domain has no labeled data and requires auxiliary con-

tents (e.g., reviews) [20, 21]. There is little related work

to exploit adversarial transfer learning to train cross-

domain recommendation task based on implicit feed-

back from both the source and the target domain, es-

pecially without auxiliary contents.

Different from the existing transfer-based ap-

proaches, we propose an adversarial transfer learning

based model ATLRec. In ATLRec, we leverage the

shared feature extractor to generate representations of

user-item interactions in both domains, such that the

domain discriminator cannot identify which domain

they belong to, for the purpose of obtaining domain-

sharable features. Meanwhile we use the private feature

extractor to extract domain-specific features for each

domain. The recommendation of each domain considers

both domain-specific and domain-sharable features by

a linear combination. For the private and the shared

feature extractor, we choose the structure similar to the

Multi-Layer Perception (MLP) model in [22]. We fur-

ther adopt an attention mechanism to learn item latent

factors of both domains by utilizing the shared users

with interaction history, so that the representations of

all items can be learned in a shared space, even when

few or even no items are shared in different domains.

By doing so, we can represent all items from the source

domain and the target domain in a shared space, for the

purpose of better linking items in different domains and

capturing cross-domain item-item relatedness to facili-

tate the learning of domain-sharable knowledge.

We summarize the contributions of this paper as

follows.

• We propose an adversarial transfer learning

based model ATLRec for cross-domain recommenda-

tion, which effectively captures domain-sharable fea-

tures to be transferred, using only the information from

implicit feedback of both domains. Meanwhile the

domain-specific features are also learned for each do-

main to be combined with domain-sharable features,

for the purpose of learning comprehensive representa-

tions.

• For the purpose of better linking items in diffe-

rent domains and capturing cross-domain item-item re-

latedness to facilitate the learning of domain-sharable

knowledge, we further adopt an attention mechanism

to learn item latent factors of both domains by utiliz-

ing the shared users with interaction history, so that all

items can be sufficiently represented in a shared space,

even when few or even no items are shared in different

domains.

•We conduct extensive experiments on various real-

world datasets. Compared with some state-of-the-

art single-domain and cross-domain recommendation

methods, our model is demonstrated to be effective.

The following sections of this paper are organized as

follows. We firstly introduce the related work in Sec-

tion 2. In Section 3, we provide the notations used in

this paper and describe the problem definition. We in-

troduce the proposed framework of our model ATLRec
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in detail in Section 4. Section 5 shows our experimental

results with analysis. Finally, we conclude the paper in

Section 6.

2 Related Work

In this section, we briefly review the work re-

lated to cross-domain linking-based recommendation,

including deep neural network and adversarial network

techniques employed for it. In addition, we discuss

attention-based techniques used in recommendation al-

gorithms.

Cross-domain linking-based recommendation can

be divided into: content-based, transfer-based, and

embedding-based. Content-based approaches mainly

focus on linking different domains by identifying auxi-

liary contents. The work proposed in [23] targets the

data sparsity problem by combining user preferences

and extracting common attributes of both users and

items. Later on, the approach in [6] was proposed which

can obtain accurate modeling of users’ interest and

needs by incorporating auxiliary contents from other

systems. The work in [7] utilizes social tags to link do-

mains, while the work in [8] uses user-generated texts

to do the same thing.

Transfer-based approaches transfer knowledge

across domains by employing machine learning tech-

niques. Especially, a class of these methods are based

on matrix factorization (MF) applied to each domain.

Collective matrix factorization (CMF) [24] jointly fac-

torizes rating matrices in the source domain and the

target domain by sharing latent factors of users. The

work in [3] proposes a codebook method to transfer

user-item rating patterns from auxiliary domains to the

target domain with a sparse rating matrix. LSCD [12]

based on CDCF [13] transfers the knowledge of rating

data among multiple domains and separates the user

latent feature matrix into sharable and domain-specific

parts adaptively to make a better recommendation.

The work proposed in [9] and the work in [10] use a

deep neural network to learn nonlinear mapping func-

tion between the source domain and the target domain.

However, the above methods have difficulty in learning

highly nonlinear user-item interaction relationships [22].

The work in [11] proposes collaborative cross-networks

(CoNet) to learn complex user-item interaction rela-

tionships and transfer knowledge across domains by

using neural networks as the base model. However,

these neural network based approaches pay more at-

tention to how to transfer domain-sharable features

than to how to obtain them, which results in domain-

specific features being transferred. Meanwhile cross-

domain item-item relatedness is usually not considered

in these approaches.

Embedding-based approaches integrate knowledge

from various networks to enhance user or item mode-

ling by means of network embedding and other em-

bedding methods. This kind of problems are diffi-

cult to solve with traditional machine learning methods

due to their complex structures. For example in [14],

the auxiliary domain is a knowledge base with hete-

rogeneous information, including both structured and

unstructured data. The authors in [14] applied em-

bedding methods including heterogeneous network em-

bedding and deep learning embedding to automatically

extract items’ structural, textual, and visual represen-

tations from the knowledge base. The work proposed in

[15] focuses on effective user embedding by using hete-

rogeneous network embedding to jointly learn users’ re-

lated information across multiple heterogeneous social

networks. However, these above methods rely on auxi-

liary contents such as textual data, visual data, and

content words.

In recent years, adversarial networks have achieved

great success in computer vision [18, 25] and natural lan-

guage processing (NLP) area [26, 27]. In cross-domain

recommendation, adversarial networks have been intro-

duced for domain adaptation. RecSys-DAN [20] learns

to adapt domain indistinguishable representations in

various modalities such as images and reviews from the

source domain with the labeled data to the target do-

main without the labeled data in an unsupervised and

adversarial fashion. The work proposed in [21] pro-

poses the domain separation network to recommend

items in the source domain to users in the target do-

main in an unsupervised mode and in need of auxi-

liary contents. The work in [19] proposes a deep do-

main adaption model to extract and transfer domain-

sharable patterns from rating matrices only, but ignores

the domain-specific features.

Attention mechanism [28, 29] has also shown great po-

tential in recommendation algorithms. The work in [30]

proposes attentive collaborative filtering (ACF) to in-

troduce both component-level and item-level attention

for multimedia recommendation into a collaborative fil-

tering (CF) framework. The authors in [31] utilized

attention mechanism to capture the varying attention

that a user pays to each aspect of different items. The

work proposed in [32] uses attention mechanism to con-

trol the ratio of the content-based (CB) and CF infor-
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mation for each user-item pair when making recommen-

dations. The work in [33] introduces the BP neural net-

work with attention mechanism (BPAM) which designs

an attention mechanism to capture the global impact

of the target user’s neighbors by means of introducing

their global weights. However few attention mechanism

techniques are used for cross-domain recommendation.

Different from the above cross-domain methods, our

approach can effectively capture domain-sharable fea-

tures to be transferred and domain-specific features for

each domain, using only the information from the im-

plicit feedback of both domains. In addition, motivated

by the above attention-based models, we adopt an at-

tention mechanism to represent all items in a shared

space, for the purpose of better linking items in diffe-

rent domains and capturing cross-domain item-item re-

latedness to facilitate the learning of domain-sharable

knowledge.

3 Notations and Problem Definition

In this section, we will introduce the notations used

in this paper and describe the problem definition. For

the sake of understanding, we list the notations in Ta-

ble 1.

We are given a source domain S and a target do-

main T , where the set of users U = {u1, ..., um} (of size

m = |U |) in both domains is shared. We denote the set

of items in the source domain S and the target domain

T by IS = {i1, ..., inS
} and IT = {j1, ..., jnT

} (of size

nS = |IS| and nT = |IT|) respectively. In this paper,

we implement the recommendation task with implicit

feedback [34, 35]. Therefore, we use matrix RT ∈ R
m×nT

to represent the user-item interaction matrix in the tar-

get domain, where the entry ruj ∈ {0, 1} is 1 (observed)

if user u has an interaction with item j and 0 (unob-

served) otherwise. Similarly, let another binary ma-

trix RS ∈ R
m×nS denote user-item interactions in the

source domain, and the entry rui ∈ {0, 1} is 1 if user

u has an interaction with item i and 0 otherwise. We

denote the set of observed items given by user u as ISu
(ITu ), and the unobserved items as I

S

u (I
T

u ) in the source

(target) domain. Similarly, let Ui (Uj) denote the users

who have interactions with item i (j) from the source

(target) domain and U i (U j) otherwise.

Problem Definition. Given two observed domains

including the user-item interaction matrices RS and

RT, our goal for the cross-domain recommendation task

is to recommend the items from I
T

u to user u by linking

users’ interaction behaviors in both RS and RT.

4 Proposed Framework

In this section, we first give an overview of the pro-

posed framework, and then the details of each model

component will be introduced. And finally we discuss

how to learn the model parameters.

4.1 Overview of Proposed Framework

The architecture of the proposed approach is shown

in Fig.1. The model mainly consists of four com-

ponents: an embedding layer with item modeling, a

cross-domain transfer layer composed of the shared-

private feature extractor, the cross-domain recommen-

dation part, and the domain discriminator. The first

component is the embedding layer with item model-

ing, which is to learn latent factors of users and items.

Especially for each item i (j) in item modeling, we in-

troduce an attention mechanism to aggregate the in-

Table 1. Definitions of Notations

Notation Definition

S, T Source domain and target domain

U , m Shared users of both domains U = {u1, ..., um} and its size m = |U |

IS, nS Set of items IS = {i1, ..., inS
} in the source domain and its size nS = |IS|

IT, nT Set of items IT = {j1, ..., jnT
} in the target domain and its size nT = |IT|

RS ∈ R
m×nS , RT ∈ R

m×nT User-item interaction matrix in the source and the target domain

rui ∈ {0, 1} Entry in the source domain user-item interaction matrix, where 1 represents

user u has an interaction with the item i in the source domain and 0 otherwise

ruj ∈ {0, 1} Entry in the target domain user-item interaction matrix, where 1 represents

user u has an interaction with the item j in the target domain and 0 otherwise

ISu , I
S
u Set of observed and unobserved items given by user u in the source domain

ITu , I
T
u Set of observed and unobserved items given by user u in the target domain

Ui, Ui Users who have and do not have interactions with item i in the source domain

Uj , Uj Users who have and do not have interactions with item j in the target domain
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Fig.1. General architecture of our proposed model. (a) Proposed adversarial transfer learning based model architecture for cross-
domain recommendation. The left and the right are the source and the target domain respectively, and the middle part is the shared
space consisting of the shared feature extractor and the domain discriminator. The shared space attempts to learn domain-sharable
features from the source and the target domain and then transfer them for the purpose of improving the target domain recommendation
performance. (b) Attention network architecture for item modeling.
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formation from the set of users who have interactions

with i (j), denoted as Ui (Uj). The second component

is the shared-private feature extractor, which attempts

to learn domain-specific and domain-sharable features

by adopting the structure similar to the MLP model

in [22]. The third component is the cross-domain reco-

mmendation part, which utilizes the MLP model and

considers both domain-sharable and domain-specific

features, for the purpose of the task of item recom-

mendation. In the domain discriminator component,

we incorporate adversarial learning to prevent domain-

specific features to be transferred. In Subsection 4.2–

Subsection4.6, we will introduce our model in detail.

4.2 Embedding Layer

4.2.1 Embedding

We use one-hot encoding to encode user-item inte-

raction indices for the purpose of representing the in-

put. For user u, item i in the source domain, and item j

in the target domain, we map them into one-hot encod-

ings xu ∈ {0, 1}m, xi ∈ {0, 1}nS and xj ∈ {0, 1}nT to

represent the vectors consisting of 0 and 1, where only

the element corresponding to the index is 1 and the

others are 0. Then we embed one-hot encodings into

continuous representations fu = PTxu, fi = QT
s xi

and fj = QT
t xj by embedding matrices P , Qs and Qt

respectively. For items i and j in the source domain

and the target domain, we further use item modeling

to learn item latent factors Fi and Fj . Then we merge

them as fui = [fu,Fi] and fuj = [fu,Fj ] to be the

input of successive layers.

4.2.2 Item Modeling

As shown in Fig.1(b), item modeling is used to learn

item latent factor by aggregating users. For each item j

(i) in the target (source) domain, we need to aggregate

the information from the set of users who have inte-

ractions with j (i), denoted as Uj (Ui). Considering

that users are shared, items in different domains can

be mapped to the same representation space and be

represented sufficiently.

We take item j in the target domain, the item latent

factor of which is denoted by Fj as an example. The

same is true for each item i in the source domain. The

aggregation function here is denoted by Aggre.

gj = Aggre({fuj
, ∀uj ∈ Uj}).

Considering that different users who have interacted

with the same item may have different informativeness

in representing this item, we introduce an attention

mechanism to model the importance of the users that

connect to item j, which is formulated as:

gj =
∑

uj∈Uj

αuj
fuj

,

α∗
uj

= wT
2 · σ(W1 · fuj

+ b1) + b2,

αuj
=

exp(α∗
uj
)

∑
uj∈Uj

exp(α∗
uj
)
,

where W1, b1, w2 and b2 are parameters in this net-

work. σ is the activation function and we choose Leaky

ReLU here.

Since some latent properties of item j may not be re-

vealed by the users with interaction history, we use the

MLP model, denoted by MLP , to fuse the information

of the item ID embedding fj and gj , for the purpose of

enhancing the representation, which is formulated as:

Fj = MLP ([fj ⊕ gj ]),

where ⊕ denotes concatenation operation.

4.3 Shared-Private Feature Extractor

For the shared-private feature extractor, we adopt

the MLP model to learn interaction features between

user and item latent factor. The MLP model is defined

as:

MLP (x|θ) = φL(φL−1(...(φ1(x))...)),

φL(x) = σL(W
T
L x+ bL),

where WL, bL, σL denote the weight matrix, the bias

vector, and the activation function for the L-th layer

respectively and θ denotes all the parameters for the

MLP model. We choose Leaky ReLU for σL here.

The shared-private feature extractor includes pri-

vate MLP layers for the specific domain and shared

MLP layers for both domains. The private MLP layers

are used to extract domain-specific features to be trans-

formed and the shared MLP layers are used to extract

domain-sharable features to be transferred. Formally,

the shared and the private MLP layers can be expressed

as follows:

f s
T = MLP (fui|θshared),

f
p
T = MLP (fuj |θT),

f s
S = MLP (fuj |θshared),

f
p
S = MLP (fui|θS),

where θshared, θT and θS are the shared MLP parame-

ters, MLP parameters of the target domain, and MLP

parameters of the source domain respectively.
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4.4 Cross-Domain Recommendation

After extracting domain-sharable and domain-

specific features from the shared-private feature extrac-

tor, we obtain a final latent representation zuj by com-

bining them:

zuj = MLP (fT),

fT = σ(WTf
p
T +HTf

s
T),

where WT denotes the transform matrix of domain-

specific features fp
T andHT denotes the transfer matrix

of domain-sharable features f s
T in the target domain. σ

is the activation function and we use Leaky ReLU here.

Then the items in the target domain are ranked by their

predicted scores:

r̂uj = σ(zuj),

where we use softmax for σ here. And we predict scores

r̂ui of the items in the source domain in the same way.

4.5 Domain Discriminator

To guarantee that domain-specific features are not

transferred, we propose a domain discriminator to es-

timate which domain the features come from, which is

formulated as:

D(f s
k|θD) = σ(MLP (f s

k|θD)),

where domain k ∈ {S,T}, θD denotes the parameters

of the domain discriminator and we choose softmax for

σ here.

We introduce an adversarial loss LAdv to prevent

domain-specific features to be transferred. The ad-

versarial loss trains the shared feature extractor to

learn domain-sharable features such that the domain

discriminator cannot reliably estimate which domain

the features belong to. The adversarial loss can be for-

mulated as:

LAdv(ΘAdv) = min
θshared

(max
θD

∑

k∈{S,T}

Tk∑

i=1

logD(f s
k)),

where Tk is the number of training examples of do-

main k and ΘAdv denotes parameters to be trained in

the adversarial training. There is a minimax optimiza-

tion that the shared feature extractor learns features to

mislead the domain discriminator and the discrimina-

tor tries its best to correctly predict the corresponding

domain label.

For the purpose of addressing the minimax opti-

mization problem, we add a gradient reversal layer

(GRL) [36]. We minimize the domain discriminator er-

rors in the training phrase, and GRL will encourage

the shared feature extractor to learn domain-sharable

features in an adversarial way.

4.6 Model Learning

Because of the nature of implicit feedback and the

task of item recommendation, we choose cross-entroy

as our loss function:

L0 = −
∑

(u,i)∈R+∪R−

rui log r̂ui + (1− rui) log(1− r̂ui),

where R+ and R− are the observed interaction ma-

trix and randomly sampled negative examples [35] re-

spectively. The objective function has probabilistic in-

terpretation and is the negative logarithm likelihood of

the following likelihood function:

L(Θ|R+ ∪R−) =
∏

(u,i)∈R+

r̂ui
∏

(u,i)∈R−

(1− r̂ui),

where Θ denotes model parameters. The final loss func-

tion of our proposed model can be written as follows:

L(Θ) = LT(ΘT) + LS(ΘS) + λLAdv(ΘAdv),

where λ is a hyper-parameter and the model parame-

ters Θ = ΘT ∪ΘS ∪ΘAdv. This objective function can

be optimized by stochastic gradient descent (SGD):

Θ
′

← Θ− η
∂L(Θ)

∂Θ
,

where η is the learning rate.

5 Experiments

In this section, we first introduce the experimental

settings and then experimental results are presented to

validate our contributions.

5.1 Experimental Settings

In this subsection, we will introduce the datasets,

the evaluation protocol, baselines, and implementation

details.

5.1.1 Datasets

We evaluate on three real-world cross-domain

datasets. The first is Mobile containing user-app in-

stallations and user-news reading records, which was

released by [11]. The second dataset is Amazon with

different domains [37], where we convert the ratings of
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4–5 as positive examples and select users and items with

at least five ratings. The last one is Douban crawled

from the Douban website 1○. Similarly, we take the rat-

ings of 4–5 as positive examples. The datasets and the

statistics are summarized in Table 2.

5.1.2 Evaluation Protocol

We use the leave-one-out (LOO) evaluation in [22],

which reserves one interaction as the test item for each

user. We determine hyper-parameters by randomly

sampling another interaction per user as the validation

set. We follow the common strategy which randomly

samples 99 negative items having no interactions with

the user and then evaluate the ability of the recom-

mender to rank the test item against the negative ones.

Aiming at top-N item recommendation, we choose

the typical evaluation metrics: hit ratio (HR), norma-

lized discounted cumulative gain (NDCG) and mean

reciprocal rank (MRR), where the ranked list is cut off

at topN = 10. HR intuitively measures whether the

reserved test item is present on the top-N list, defined

as:

HR =
1

|U |

∑

u∈U

δ(pu 6 topN),

where pu is the hit position of the test item for user

u and δ is the indicator function. NDCG and MRR

represent the rank of the hit positions, which can be

defined as:

NDCG =
1

|U |

∑

u∈U

log 2

log(pu + 1)
,

MRR =
1

|U |

∑

u∈U

1

pu
.

The higher the value, the better the performance.

5.1.3 Baselines

We compare our model with the following base-

lines, including several state-of-the-art single-domain

and cross-domain recommendation methods. The first

two are single-domain methods while the others are

cross-domain methods.

Bayesian Personalized Ranking (BPR) [38].

Bayesian personalized ranking is a typical CF approach,

which learns the user and item latent factors via matrix

factorization and pairwise rank loss.

CMF [24]. Collective matrix factorization is a multi-

relation learning approach, which jointly factorizes

user-item interaction matrices of both domains by shar-

ing user latent factors here.

CDCF [13]. Cross-domain CF is a context-aware ap-

proach, which is based on FM and extends the single-

domain feature vector to incorporate the information

from auxiliary domains. It uses the auxiliary as con-

text and applies factorization on the merged domains

aligned by shared users.

LSCD [12]. LSCD is based on CDCF [13], which

transfers the knowledge of rating data among multiple

domains and separates the user latent feature matrix

into sharable and domain-specific parts adaptively to

make a better recommendation.

MLP [22]. Multi-layer perception is a typical neural

collaborate filtering approach. It learns complex (non-

linear) user-item interactions by using neural networks.

MLP++. MLP++ is a degenerated method with no

transfer learning part, which combines two MLP mod-

els by sharing the user embedding matrix only.

Cross-Stitch Networks (CSN) [39]. The cross-stitch

network is a deep multi-task learning model, which

combines two domains linearly by a shared coefficient

to transfer knowledge.

CoNet [11]. CoNet is a state-of-the-art deep cross-

domain recommendation model. It learns complex user-

item interaction relationships by using neural networks

and enables dual knowledge transfer across domains by

introducing improved cross connections based on the

cross-stitch network.

Table 2. Datasets and Statistics

Dataset Domain Number of Items Number of Number of Interactions Density

Source Target Source Target Shared Source Target Source (%) Target (%)

Mobile News App 29 921 14 348 23 111 617 146 1 164 394 0.089 0.351
Amazon Movies and TV Books 58 119 311 981 30 637 581 231 988 969 0.033 0.010

Digital Music Movies and TV 10 730 33 003 2 889 39 869 139 202 0.129 0.146
Douban DoubanMovie DoubanBook 22 411 5 909 2 002 893 561 85 781 1.992 0.725

Note: Source refers to the source domain. Target refers to the target domain. Shared refers to the shared users between domains.
Mobile, Amazon and Douban are three real-world cross-domain datasets, each containing the source domain and the target domain.

1○https://www.douban.com/, May 2020.
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SCoNet [11]. SCoNet is an improved version of

CoNet, which adaptively selects representations to

transfer and has proven to perform better than CoNet.

5.1.4 Implementation

For BPR, we use the popular CF library LightFM 2○.

For CMF, we use a Python version of the Mat-

lab code 3○. For CDCF, we adopt the libFM

implementation 4○. For MLP, CoNet and SCoNet, we

adopt the codes provided by authors. For MLP++, we

change the MLP code to combine two MLP models by

sharing the user embedding matrix. For CSN, we make

modifications based on the CoNet code, keeping the

number of neurons in each hidden layer the same and

turning the transfer matrix into a scalar. For each base-

line, we try to get their best performance by adjusting

parameters. Our model is implemented by TensorFlow

and the parameters we use are initialized in a normal

distribution N (0, 0.012). The optimizer we adopt is

Adam with an initial learning rate of 0.001. The nega-

tive sampling ratio we adopt is 1 while the batch size

is 128. For the shared-private feature extractor, we

adopt two-layer MLP structure and the configuration

is [64→ 64]. As for the design of the MLP layer in the

domain discriminator, the configuration of hidden lay-

ers is [64→ 32→ 16→ 2]. For the rest of cross-domain

recommendation, we use two-layer MLP structure with

both domains configured at [64→ 64].

5.2 Comparison with Baselines

In order to prove the performance of our model

ATLRec, we compare it with several state-of-the-

art single-domain and cross-domain recommendation

methods. The performance comparison results are il-

lustrated in Table 3. To distinguish between two sets

of data in Amazon without taking up space, we use

Amazon(1) and Amazon(2) in Table 3 to represent the

first and the second set of Amazon data in Table 2,

respectively. The last column is the relative improve-

ment compared with the best baselines. These base-

lines can be classified in two ways. Firstly, we can di-

vide them into shallow models containing BPR, CMF,

CDCF and LSCD and deep learning based models con-

taining the rest. These methods can also be divided

into single-domain methods including BPR and MLP

and cross-domain methods including the rest. We can

see that our proposed model performs better than all

these baselines.

We can observe that deep learning based methods

(e.g., MLP) perform better than shallow methods (e.g.,

BPR) in either single-domain or cross-domain, which

proves complex nonlinear user-item interaction rela-

tionships learned by deep neural networks benefit not

only single-domain but also cross-domain recommenda-

tion, especially in the case of extreme sparse data. For

instance in the most sparse dataset, Amazon Movies &

TV and Book, our model ATLRec improves more than

18% compared with shallow cross-domain models CMF,

CDCF and LSCD in terms of all the three evaluation

metrics.

Table 3. Performance Comparison of Multiple Methods

Dataset Metric BPR CMF CDCF LSCD MLP MLP++ CSN CoNet SCoNet ATLRec Improvement (%)

Mobile HR 0.640 1 0.791 1 0.790 5 0.829 7 0.842 5 0.843 1 0.845 1 0.845 9 0.847 6∗ 0.855 6 0.94

NDCG 0.502 2 0.583 2 0.602 3 0.631 1 0.667 5 0.668 3 0.671 2 0.671 3 0.672 8∗ 0.683 8 1.63

MRR 0.461 7 0.537 8 0.551 5 0.578 4 0.621 5 0.623 6 0.630 5 0.629 5 0.630 7∗ 0.644 3 2.16

Amazon(1) HR 0.332 9 0.359 4 0.361 1 0.370 9 0.386 0 0.404 7 0.422 6 0.426 0 0.428 1∗ 0.440 9 2.99

NDCG 0.220 7 0.230 5 0.221 9 0.238 8 0.251 5 0.252 3 0.265 1 0.275 2 0.280 5∗ 0.301 9 7.63

MRR 0.174 6 0.190 6 0.183 4 0.230 6 0.209 9 0.260 0 0.269 5 0.281 1 0.293 1∗ 0.311 6 6.31

Amazon(2) HR 0.351 9 0.389 1 0.385 6 0.401 7 0.422 6 0.423 3 0.424 4 0.438 2 0.440 3∗ 0.455 9 3.54

NDCG 0.183 3 0.210 6 0.209 8 0.227 5 0.238 1 0.246 3 0.238 1 0.244 4 0.247 2∗ 0.258 9 4.73

MRR 0.169 4 0.209 8 0.215 5 0.228 1 0.236 4 0.243 8 0.238 4 0.241 9 0.244 5∗ 0.251 4 2.82

Douban HR 0.349 1 0.382 5 0.394 7 0.411 9 0.425 6 0.440 1 0.444 6∗ 0.439 6 0.442 5 0.453 0 1.89

NDCG 0.160 3 0.184 4 0.206 9 0.231 2 0.247 5 0.266 3 0.265 6 0.261 1 0.266 5∗ 0.273 5 2.63

MRR 0.156 9 0.169 4 0.173 7 0.210 8 0.193 0 0.264 6∗ 0.261 1 0.258 9 0.264 2 0.269 1 1.70

Note: The best model is boldfaced and the best baselines are followed by stars.

2○https://github.com/lyst/lightfm, May 2020.
3○http://www.cs.cmu.edu/˜ajit/cmf/, May 2020.
4○http://www.libfm.org/, May 2020.
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The other thing we can see is that compared with

single-domain methods, cross-domain methods perform

better no matter in the case of deep learning based or

shallow models, which proves the effectiveness of uti-

lizing knowledge from auxiliary domains, especially un-

der the data sparse problem. For instance in the two

Amazon datasets, our model ATLRec achieves 14.22%

and 7.88% improvements respectively in terms of HR

compared with the deep learning based single-domain

method MLP. However, different ways to utilize the

source domain lead to different levels of performance

improvement. In general, the last four methods in-

cluding CSN, CoNet, SCoNet and our model ATLRec

achieve better improvement than MLP++ sharing the

user embedding matrix only based on shared users,

which illustrates the importance of knowledge trans-

fer. For instance in the Mobile dataset, ATLRec gains

1.48%, 2.32% and 3.32% improvements over MLP++

in terms of HR, NDCG and MRR, respectively.

Our model obtains obvious improvement over know-

ledge transfer based cross-domainmethods CSN, CoNet

and SCoNet. For instance in the Amazon Movies & TV

and Books, ATLRec improves 2.99%, 7.63% and 6.31%

in terms of HR, NDCG and MRR compared with the

best baseline SCoNet. This result shows that what to

transfer is a matter deserving great concern and trans-

ferring domain-sharable knowledge benefits the perfor-

mance of recommender systems.

As we can see from what has been discussed above

and Table 3, our model ATLRec performs better than

all the baselines, which illustrate its effectiveness.

5.3 Sensitivity Analysis of λ

We analyse the sensitivity of the loss weight coeffi-

cient λ. We keep the structure of our proposed model

and then change the coefficient λ from 0.05 to 1 for

all datasets. From Fig.2, we can observe that these
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Fig.2. Sensitivity analysis of λ. (a) Dataset Mobile. (b) Dataset Amazon(1). (c) Dataset Amazon(2). (d) Dataset Douban.
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datasets reach their good performance when λ is equal

to 0.1, 0.25, 0.15 and 0.06, respectively. The loss weight

coefficient λ represents a trade-off in extracting domain-

sharable and domain-specific features. Therefore, the

larger the optimal coefficient λ, the more the domain-

sharable features need to be transferred.

5.4 Impact of Embedding Size

We investigate the impact of the embedding size on

recommendation performance. We change the dimen-

sion of the embedding from 8 to 64 for all datasets,

specifically 8, 16, 32, 50, 64. From Fig.3, it can be

observed that these datasets reach their good perfor-

mance when the embedding size is around 32, 32, 50

and 32, respectively. When the embedding dimension is

too small, the features cannot be effectively extracted.

When the size is too large, the extracted features will

be too noisy.

5.5 Effectiveness of Adversarial Transfer

Learning and Attention Mechanism

Table 4 shows the comparison of our proposed model

with its simplified models on the HR test performance

(NDCG and MRR have similar trends). The first model

is the base MLP [22] model. We apply transfer learning

to the base MLP model for the second model. In the

third model, we incorporate adversarial training and

consider both domain-specific and domain-sharable fea-

tures. The last model is our proposed model, which

incorporates adversarial training and attention mecha-

nism.

From Table 4 we can observe that the performance

is gradually improving with the addition of each part,

which proves the effectiveness of adversarial transfer

learning and attention mechanism. For instance in the

Amazon Digital Music and Movies & TV, the second

model improves 4.24% in terms of HR compared with

the base MLP model, which demonstrates the effec-
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Fig.3. Impact of embedding size. (a) Dataset Mobile. (b) Dataset Amazon(1). (c) Dataset Amazon(2). (d) Dataset Douban.
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tiveness of transfer learning. In the Douban dataset,

the model incorporating adversarial training improves

1.67% compared with the model with transfer learning,

which proves the effectiveness of adversarial transfer

learning. In the Amazon Movies & TV and Books, our

model improves 2.37% compared with the model with-

out attention mechanism, which proves the necessity of

attention mechanism.

Table 4. Performance Comparison Between Our Model and
Simplified Models

Model Mobile Amazon(1) Amazon(2) Douban

MLP [22] 0.842 5 0.386 0 0.422 6 0.425 6

+Transfer 0.846 9 0.426 7 0.440 5 0.442 6

+Adversarial 0.852 9 0.430 7 0.447 2 0.450 0

+Adv+Attention 0.855 6 0.440 9 0.4559 0.453 0

Note: The comparison is based on the HR test performance, and
the best model is boldfaced.

5.6 Optimization Performance

We analyze the optimization performance of our

model ATLRec in different training stages. Figs.4(a)–

4(d) show the training loss and NDCG test performance

in four datasets (HR and MRR have similar trends)

varying with training epochs, respectively. We can

observe that the training loss gradually decreases and

the recommendation performance improves accordingly

with more iterations. In the Mobile dataset, the most

effective updates occur in the first 20 iterations, while

the most effective updates occur in the first 30 itera-

tions for the other datasets. Fig.4 also shows that our

model is relatively stable with more iterations.

6 Conclusions

In this paper, we proposed an adversarial transfer

learning based model ATLRec to link users’ interaction
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behaviors in different domains for cross-domain rec-

ommendation, which can effectively capture domain-

sharable features and domain-specific features at the

same time, for the purpose of learning comprehensive

representations. In addition, we adopted an attention

mechanism to learn their item latent factors by utiliz-

ing the shared users with an interaction history, for the

purpose of better linking items in different domains and

capturing cross-domain item-item relatedness to facili-

tate the learning of domain-sharable knowledge, even

when few or even no items are shared by different do-

mains. The superior performance of our model has been

proved by experiments conducted on various real-world

datasets.

Nowadays, many recommendation systems are

based on spatio-temporal information, such as POI

recommendations. In the future work, we would like

to apply adversarial transfer learning to POI recom-

mender systems and combine adversarial transfer learn-

ing with spatio-temporal information to improve the

recommendation performance.
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